Anomalies Heap

Goal 1

for each frame, locate all exceptions that are raised in the frame, including re-raises. These are the exceptions that might propagate from the frame. (completed)

Goal 2

for each frame, compute set of exceptions that can propagate by performing Goal 1 and then removing any exceptions that are masked by their handlers. (completed)

Goal 3

for each frame, perform Goal 2 to obtain exceptions that may propagate, but also consider exceptions that are raised within lexically nested blocks in the frame. The blocks that are lexically nested may be executed during execution of the frame and may propagate exceptions into the frame. (completed)

Where we are going?

Goal 4

perform a Goal 3 analysis on the frames available for examination. Store the set of exceptions that each frame may propagate. Using the computed sets, analyze all frames containing procedure and function calls in order to determine the exceptions that might be raised within the invoked procedure and propagated to the invoker. (in progress)

Goal 5

calculate the set of anonymous exceptions within the frames by using the scope of exceptions to determine whether they can become anonymous or not. (in progress)

Goal 6

enhance identifier recognition in symbol table by including information about variable types, subprogram parameters and so on. Use one of the published algorithms for disambiguation. (in progress)

Goal 7

encode anomaly recognizer using tools from Goal 6. All anomalies that have a formal description can be recognized. This goal may in fact be many goals, where each new goal represents a new level of complexity that has been conquered in analysis. (in progress)

different strategies for dealing with exceptions:

ostrich (when others => null;)

chicken little (completion of main program due to not catching a CONSTRAINT _error)

stenographer (accumulate information and save it during crashes, record the progress of system)

mason (build walls around important areas to make sure that even if unexpected exceptions occur, they cannot affect other areas of system)

pigeonholer (attempts to handle every possible exception in every frame)

bungler (causes other exceptions immediately or later by improper handling of exception)

soldier (handles what is appropriate within expectations and propagates others to higher authority)

the general (directs handling from a remote vantage)

